## Exercise 36

The table gives the number N(t), measured in thousands, of minimally invasive cosmetic surgery procedures performed in the United States for various years t.

| t    | N(t) (thousands) |
|------|------------------|
| 2000 | 5,500            |
| 2002 | 4,897            |
| 2004 | 7,470            |
| 2006 | 9,138            |
| 2008 | 10,897           |
| 2010 | 11,561           |
| 2012 | 13,035           |

Source: American Society of Plastic Surgeons

- (a) What is the meaning of N'(t)? What are its units?
- (b) Construct a table of estimated values for N'(t).
- (c) Graph N and N'.
- (d) How would it be possible to get more accurate values for N'(t)?

## Solution

N'(t) is the rate at which the number of surgeries is increasing with respect to time (units of thousands/year). To obtain the values of N'(t), calculate the slope of the secant line going through two adjacent t values. At t = 2000, for example,

$$N'(t) = \frac{N(2002) - N(2000)}{2002 - 2000} = \frac{4,897 - 5,500}{2} = -301.50$$

At t = 2002, there are two secant lines.

$$N'(t) = \frac{N(2002) - N(2000)}{2002 - 2000} = \frac{4,897 - 5,500}{2} = -301.50$$
$$N'(t) = \frac{N(2004) - N(2002)}{2004 - 2002} = \frac{7,470 - 4,897}{2} = 1286.50$$


At such times where there are two possible secant lines, take the average for the best estimate.

$$\frac{(-301.50) + (1286.5)}{2} = 492.50$$

| Below is a table of | estimated values | for | N'(t | ;). |
|---------------------|------------------|-----|------|-----|
|---------------------|------------------|-----|------|-----|

| t    | N(t)       | N'(t)   |
|------|------------|---------|
| 2000 | 5,500      | -301.50 |
| 2002 | $4,\!897$  | 492.50  |
| 2004 | $7,\!470$  | 1060.25 |
| 2006 | $9,\!138$  | 856.75  |
| 2008 | $10,\!897$ | 605.75  |
| 2010 | $11,\!561$ | 534.50  |
| 2012 | $13,\!035$ | 737.00  |
|      |            |         |

Below is a graph of N and N' versus t.



To get more accurate values for N'(t), get data from every year rather than every two years.