Exercise 36

The table gives the number $N(t)$, measured in thousands, of minimally invasive cosmetic surgery procedures performed in the United States for various years t.

t	$N(t)$ (thousands)
2000	5,500
2002	4,897
2004	7,470
2006	9,138
2008	10,897
2010	11,561
2012	13,035

Source: American Society of Plastic Surgeons
(a) What is the meaning of $N^{\prime}(t)$? What are its units?
(b) Construct a table of estimated values for $N^{\prime}(t)$.
(c) Graph N and N^{\prime}.
(d) How would it be possible to get more accurate values for $N^{\prime}(t)$?

Solution

$N^{\prime}(t)$ is the rate at which the number of surgeries is increasing with respect to time (units of thousands/year). To obtain the values of $N^{\prime}(t)$, calculate the slope of the secant line going through two adjacent t values. At $t=2000$, for example,

$$
N^{\prime}(t)=\frac{N(2002)-N(2000)}{2002-2000}=\frac{4,897-5,500}{2}=-301.50 .
$$

At $t=2002$, there are two secant lines.

$$
\begin{aligned}
& N^{\prime}(t)=\frac{N(2002)-N(2000)}{2002-2000}=\frac{4,897-5,500}{2}=-301.50 \\
& N^{\prime}(t)=\frac{N(2004)-N(2002)}{2004-2002}=\frac{7,470-4,897}{2}=1286.50
\end{aligned}
$$

At such times where there are two possible secant lines, take the average for the best estimate.

$$
\frac{(-301.50)+(1286.5)}{2}=492.50
$$

Below is a table of estimated values for $N^{\prime}(t)$.

t	$N(t)$	$N^{\prime}(t)$
2000	5,500	-301.50
2002	4,897	492.50
2004	7,470	1060.25
2006	9,138	856.75
2008	10,897	605.75
2010	11,561	534.50
2012	13,035	737.00

Below is a graph of N and N^{\prime} versus t.

To get more accurate values for $N^{\prime}(t)$, get data from every year rather than every two years.

